Olympiad Corner

The Czech-Slovak-Polish Match this year took place in Bilovec on June 21-22, 2004. Here are the problems.

Problem 1. Show that real numbers p, q, r satisfy the condition

$$p^3(q - r)^2 + 2p^2(q + r) + 1 = p^4$$

if and only if the quadratic equations

$$x^2 + px + q = 0$$

and

$$y^2 - py + r = 0$$

have real roots (not necessarily distinct) which can be labeled by x_1, x_2 and y_1, y_2, respectively, in such way that the equality $x_1y_1 + x_2y_2 = 1$ holds.

Problem 2. Show that for each natural number k there exist at most finitely many triples of mutually distinct primes p, q, r for which the number $qr - k$ is a multiple of p, the number $pr - k$ is a multiple of q, and the number $pq - k$ is a multiple of r.

Problem 3. In the interior of a cyclic quadrilateral $ABCD$, a point P is given such that $|\measuredangle BPC| = |\measuredangle BAP| = |\measuredangle DPC|$. Denote by E, F and G the feet of the perpendiculars from the point P to the lines AB, AD and DC, respectively. Show that the triangles FEG and PBC are similar.

(continued on page 4)

Homothety

Kin Y. Li

A geometric transformation of the plane is a function that sends every point on the plane to a point in the same plane. Here we will like to discuss one type of geometric transformations, called homothety, which can be used to solve quite a few geometry problems in some international math competitions.

A homothety with center O and ratio k is a function that sends every point X on the plane to the point X' such that

$$OX' = kOX.$$

So if $|k| > 1$, then the homothety is a magnification with center O. If $|k| < 1$, it is a reduction with center O. A homothety sends a figure to a similar figure.

Example 1. (1981 IMO) Three congruent circles have a common point O and lie inside a given triangle. Each circle touches a pair of sides of the triangle. Prove that the incenters and the circumcenters of the triangle and the point O are collinear.

Solution. Consider the figure shown. Let A', B', C' be the centers of the circles. Since the radii are the same, so $A'B'$ is parallel to AB, $B'C'$ is parallel to BC, $C'A'$ is parallel to CA. Since AA', BB', CC' are the bisector of $\angle A$, $\angle B$, $\angle C$ respectively, they concur at the incenter I of $\triangle ABC$. Note O is the circumcenter of $\triangle A'B'C'$ as it is equidistant from A', B', C'. Then the homothety with center I sending $\triangle A'B'C'$ to $\triangle ABC$ will send O to the circumcenter P of $\triangle ABC$. Therefore, I, O, P are collinear.

Example 2. (1982 IMO) A non-isosceles triangle $A_1A_2A_3$ is given with sides a_1, a_2, a_3, a_i is the side opposite A_i. For all $i = 1, 2, 3$, M_i is the midpoint of side a_i, and T_i is the point where the incirlce touches side a_i. Denote by S_i the reflection of T_i in the interior biserctor of angle A_i.

Prove that the lines M_1S_1, M_2S_2 and M_3S_3 are concurrent.
Solution. Let I be the incenter of $\triangle A_1A_2A_3$. Let B_1, B_2, B_3 be the points where the internal angle bisectors of $\angle A_1$, $\angle A_2$, $\angle A_3$ meet a_1, a_2, a_3 respectively. We will show S_3 is parallel to M_1M_2. With respect to A_1B_1, the reflection of T_1 is S_1 and the reflection of T_2 is T_3. So $\angle T_1S_1 = \angle T_3T_2$. With respect to A_2B_2, the reflection of T_2 is S_2 and the reflection of T_1 is S_3. So $\angle T_3S_3 = \angle T_1T_2$. Then $\angle T_3S_3 = \angle T_1S_1$. Since IT_1 is perpendicular to A_1A_2, we get S_3S_1 is parallel to A_1A_2. Since A_1A_2 is parallel to M_2M_3, we get S_3S_1 is parallel to M_2M_3. Similarly, S_2S_2 is parallel to M_1M_2 and S_3S_3 is parallel to M_1M_3.

Now the circumcircle of $\triangle S_1S_2S_3$ is the incircle of $\triangle A_1A_2A_3$ and the circumcircle of $\triangle M_1M_2M_3$ is the nine point circle of $\triangle A_1A_2A_3$. Since $A_1A_2A_3$ is not equilateral, these circles have different radii. Hence $\triangle S_1S_2S_3$ is not congruent to $\triangle M_1M_2M_3$ and there is a homothety sending $\triangle S_1S_2S_3$ to $\triangle M_1M_2M_3$. Then M_1S_1, M_2S_2 and M_3S_3 concur at the center of the homothety.

Example 4. (1983 IMO) Let A be one of the two distinct points of intersection of two unequal coplanar circles C_1 and C_2 with centers O_1 and O_2 respectively. One of the common tangents to the circles touches C_1 at P_1 and C_2 at P_2, while the other touches C_1 at Q_1 and C_2 at Q_2. Let M_1 be the midpoint of P_1Q_1 and M_2 be the midpoint of P_2Q_2. Prove that $\angle O_1AO_2 = \angle M_1AM_2$.

Solution. By symmetry, lines O_2O_1, P_1P_3, Q_3Q_1, concur at a point O. Consider the homothety with center O which sends C_1 to C_2. Let OA meet C_2 at B, then A is the image of B under the homothety. Since $\triangle BM_1O_1$ is sent to $\triangle AM_2O_2$, so $\angle M_1BO_1 = \angle M_2AO_2$.

Now $\triangle OP_1O_1$ similar to $\triangle OM_1P_1$ implies $OO_1/OP_1 = OP_1/OM_1$. Then

$$OO_1 \cdot OM_1 = OP_1^2 = OA \cdot OB,$$

which implies points A, B, M_1, O are concyclic. Then $\angle M_1BO_1 = \angle M_2AO_1$. Hence $\angle M_1AO_1 = \angle M_2AO_2$. Adding $\angle O_1AM_2$ to both sides, we have $\angle O_1AO_2 = \angle M_1AM_2$.

Example 5. (1992 IMO) In the plane let C be a circle, L a line tangent to the circle C, and M a point on L. Find the locus of all points P with the following property: there exist two points Q, R on L such that M is the midpoint of QR and C is the inscribed circle of $\triangle PQR$.

Solution. Let L be the tangent to C at S. Let T be the reflection of S with respect to M. Let U be the point on C diametrically opposite S. Take a point P on the locus. The homothety with center M that sends G_1 to G_2 will send C to some point A' and line EF to the tangent line of Γ at A'. Since lines EF and L are parallel, A' must be the midpoint of arc $FA'E$. Then $\angle A'EC = \angle A'FC = \angle A'ME$. So $\triangle A'EC$ is similar to $\triangle A'ME$. Then the power of A' with respect to Γ is $A'C' \cdot A'M = A'E^2$. Similar, the power of A' with respect to Γ_2 is $A'F^2$. Since $A'E = A'F$, A' has the same power with respect to Γ_1 and Γ_2. So A' is on the radical axis AB. Hence, $A' = A$. Then $C' = C$ and C is on EF.

Similarly, the other common tangent to Γ_1 and Γ_2 passes through D. Let O_2 be the center of Γ_2. By symmetry with respect to O_2O_1, we see that O_2 is the midpoint of arc CO_2D. Then

$$\angle DO_1C = \angle DCO_2 = \angle FCO_2.$$

This implies O_2 is on the angle bisector of $\angle FCD$. Since CF is tangent to Γ_2, therefore CD is tangent to Γ_2.

(continued on page 4)
Problem Corner

We welcome readers to submit their solutions to the problems posed below for publication consideration. The solutions should be preceded by the solver’s name, home (or email) address and school affiliation. Please send submissions to Dr. Kin Y. Li, Department of Mathematics, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong. The deadline for submitting solutions is January 20, 2005.

Problem 211. For every a, b, c, d in $[1,2]$, prove that

$$
\frac{a+b}c + \frac{c+d}d \leq 4 \frac{a+c}{b+d}.
$$

(Source: 32nd Ukrainian Math Olympiad)

Problem 212. Find the largest positive integer N such that if S is any set of 21 points on a circle C, then there exist N arcs of C whose endpoints lie in S and each of the arcs has measure not exceeding 120°.

Problem 213. Prove that the set of all positive integers can be partitioned into positive integers can be partitioned into k subsets such that if $i \neq j$, then at least two of them belong to the same subset.

Problem 214. Let the inscribed circle of triangle ABC be tangent to sides AB, BC at E and F respectively. Let the angle bisector of $\angle CAB$ intersect segment EF at K. Prove that $\angle EKA$ is a right angle.

Problem 215. Given a 8x8 board. Determine all squares such that if each one is removed, then the remaining 63 squares can be covered by 21×1 rectangles.

************** Solutions

Problem 206. (Due to Zdravko F. Starc, Vraca, Serbia and Montenegro) Prove that if a, b are the legs and c is the hypotenuse of a right triangle, then

$$(a+b)\sqrt{a} + (a-b)\sqrt{b} < \sqrt{2\sqrt{2}c}\sqrt{c}.$$

Solution. Cheng HAO (The Second High School Attached to Beijing Normal University). HUI Jack (Queen’s College, Form 5). D. Kipp JOHNSON (Valley Catholic School, Teacher, Beaverton, Oregon, USA). POON Ming Fung (STFA Leung Kau Kui College, Form 7). Achilleas P. PORFYRIADIS (American College of Thessaloniki “Anatolia”, Thessaloniki, Greece), Problem Group Discussion Euler-Teorema (Fortaleza, Brazil), Anna Ying PUN (STFA Leung Kau Kui College, Form 6). TO Ping Leung (St. Peter’s Secondary School) and YIM Wing Yin (South Tuen Mun Government Secondary School, Form 4).

By Pythagoras’ theorem,

$$a + b \leq \sqrt{(a + b)^2 + (a - b)^2} = \sqrt{2c}.$$

Equality if and only if $a = b$. By the Cauchy-Schwarz inequality,

$$\left(\frac{a + b}{\sqrt{a}} + \frac{a - b}{\sqrt{b}}\right)^2 \leq \frac{(a + b)^2}{a} + \frac{(a - b)^2}{b} \leq \frac{2\sqrt{2c}}{\sqrt{2c}}.$$

For equality to hold throughout, we need $a + b : a - b = \sqrt{a} : \sqrt{b} = 1 : 1$, which is not possible for legs of a triangle. So we must have strict inequality.

Other commended solvers: CHAN Wai Hung (Carmel Divine Grace Foundation Secondary School, Form 6), LI Sai Ki (Carmel Divine Grace Foundation Secondary School, Form 6), LING Shu Dung, Anna Ying PUN (STFA Leung Kau Kui College, Form 6) and YIM Wing Yin (South Tuen Mun Government Secondary School, Form 4).

Problem 208. In $\triangle ABC$, $AB > AC > BC$. Let D be a point on the minor arc BC of the circumcircle of $\triangle ABC$. Let O be the circumcenter of $\triangle ABC$. Let E, F be the intersection points of line AD with the perpendiculars from O to AB, AC, respectively. Let P be the intersection of lines BE and CF. If $PB = PC + PO$, then $\angle BAC$ has proof with proof.

Solution. Achilles P. PORFYRIADIS (American College of Thessaloniki “Anatolia”, Thessaloniki, Greece). Problem Group Discussion Euler-Teorema (Fortaleza, Brazil) and Anna Ying PUN (STFA Leung Kau Kui College, Form 6).

Since E is on the perpendicular bisector of chord AB and F is on the perpendicular bisector of chord AC, $AE = BE$ and $AF = CF$. Applying exterior angle theorem,

$$\angle BPC = \angle AEP + \angle CFD = 2(\angle BAD + \angle CAD) = 2 \angle BAC = \angle BOC.$$

Hence, B, C, P, O are concyclic. By Ptolemy’s theorem,

$$PB \cdot OC = PC \cdot OB + PO \cdot BC.$$

Then $(PB - PC) \cdot OC = PO \cdot BC$. Since $PB - PC = PO$, we get $OC = BC$ and so $\triangle OBC$ is equilateral. Then

$$\angle BAC = \frac{1}{2} \angle BOC = 30^\circ.$$

Other commended solvers: Cheng HAO (The Second High School Attached to Beijing Normal University), HUI Jack (Queen’s College, Form 5), POON Ming Fung (STFA Leung Kau Kui College, Form 7), TONG Yiu Wai.
Problem 209. Prove that there are infinitely many positive integers n such that $2^n + 2$ is divisible by n and 2^{n+1} is divisible by $n - 1$.

Solution. D. Kipp Johnson (Valley Catholic School, Teacher, Beaverton, Oregon, USA), POON Ming Fung (St. Francis Leung Kau Kui College, Form 7) and Problem Group Discussion Euler-Theorema (Fortaleza, Brazil).

As $2^2 + 2 = 6$ is divisible by 2 and $2^4 + 1 = 5$ is divisible by 1, $n = 2$ is one such number.

Next, suppose $2^n + 2$ is divisible by n and 2^{n+1} is another such number. We will prove $N = 2^n + 2$ is another such number. Since $N - 1 = 2^n + 1 = (n - 1)k$ is odd, so k is odd and n is even. Since $N = 2^n + 2 = 2(2^{n-1} + 1) = nm$ and n is even, so m must be odd. Recall the factorization

\[x + 1 = (x + 1)(x^2 - x^4 + \ldots + 1) \]

for odd positive integer i. Since k is odd, $2^n + 2 = 2(2^{n-1} + 1) = (0^{n-1}1)$ is divisible by $2(2^{n-1} + 1) = 2^n + 2 = N$ using the factorization above. Since m is odd, $2^n + 1 = 2^{n+1} + 1$ is divisible by $2^n + 1 = N - 1$. Hence, N is also such a number. As $N > n$, there will be infinitely many such numbers.

Problem 210. Let $a_1 = 1$ and

\[a_{n+1} = \frac{a_n^2 + 1}{2a_n} \]

for $n = 1, 2, 3, \ldots$ Prove that for every integer $n > 1$,

\[\frac{2}{\sqrt{a_n^2 - 2}} \]

is an integer.

Solution. G.R.A. 20 Problem Group (Roma, Italy), HUDREÁ Mihail (High School “Tiberiu Popoviciu” Cluj-Napoca Romania), Problem Group Discussion Euler–Teorema (Fortaleza, Brazil), TO Ping Leung (St. Peter’s Secondary School) and YIM Wing Yin (South Tuen Mun Government Secondary School, Form 4).

Note $a_n = p_n/q_n$, where $p_1 = q_1 = 1$, $p_{n+1} = p_n^2 + 2q_n^2$, $q_{n+1} = 2p_nq_n$, for $n = 1, 2, 3, \ldots$. Then

\[\frac{2}{\sqrt{a_n^2 - 2}} = \frac{2q_n}{\sqrt{p_n^2 - 2q_n^2}}. \]

It suffices to show by mathematical induction that $p_n^2 - 2q_n^2 = 1$ for $n > 1$. We have $p_2^2 - 2 = 3^2 - 2 = 3 = 1$. Assuming case n is true, we get

\[p_{n+1}^2 - 2q_{n+1}^2 = (p_n^2 + 2q_n^2)^2 - 2(2p_nq_n) = (p_n^2 - 2q_n^2)^2 = 1. \]

Olympiad Corner (continued from page 1)

Problem 4. Solve the system of equations

\[\frac{1}{xy} = \frac{x}{z} + 1, \quad \frac{1}{yz} = \frac{y}{x} + 1, \quad \frac{1}{zx} = \frac{z}{y} + 1 \]

in the domain of real numbers.

Problem 5. In the interiors of the sides AB, BC and CA of a given triangle ABC, points K, L and M, respectively, are given such that

\[\frac{AK}{KB} = \frac{BL}{LC} = \frac{CM}{MA}. \]

Show that the triangles ABC and KLM have a common orthocenter if and only if the triangle ABC is equilateral.

Problem 6. On the table there are k heaps of $1, 2, \ldots, k$ stones, where $k \geq 3$. In the first step, we choose any three of the heaps on the table, merge them into a single new heap, and remove 1 stone (throw it away from the table) from this new heap. In the second step, we again merge some three of the heaps together into a single new heap, and then remove 2 stones from this new heap. In general, in the i-th step we choose any three of the heaps, which contain more than i stones when combined, we merge them into a single new heap, then remove i stones from this new heap. Assume that after a number of steps, there is a single heap left on the table, containing p stones. Show that the number p is a perfect square if and only if the numbers $2k+2$ and $3k+1$ are perfect squares. Further, find the least number k for which p is a perfect square.

Homothety (continued from page 2)

Example 7. (2000APMO) Let ABC be a triangle. Let M and N be the points in which the median and the angle bisector, respectively at A meet the side BC. Let Q and P be the points in which the perpendicular at N to NA meets MA and BA respectively and O the point in which the perpendicular at P to BA meets AN produced.

Prove that PQ is perpendicular to BC.

Solution (due to Bobby Poon). The case $AB = AC$ is clear.

Without loss of generality, we may assume $AB > AC$. Let AN intersect the circumcircle of $\triangle ABC$ at D. Then

\[\angle DBC = \angle DAC = \frac{1}{2} \angle BAC \]

\[= \angle DAB = \angle DCB. \]

So $DB = DC$ and MD is perpendicular to BC.

Consider the homothety with center A that sends $\triangle DBC$ to $\triangle OBC'$. Then $OB' = OC'$ and BC is parallel to BC'. Let $B'C'$ intersect PN at K. Then

\[\angle OB'K = \angle DBC = \angle DAB \]

\[= 90^\circ - \angle AOP = \angle OPK. \]

So points P, B', O, K are concyclic. Hence $\angle B'KO = \angle B'PO = 90^\circ$ and $B'K = C'K$. Since BC is parallel to $B'C'$, this implies K is on AM. Hence, $K = Q$. Since $\angle B'KO = 90^\circ$ and BC is parallel to $B'C'$, we get QO is perpendicular to BC.

Problem 1

First part. Assume that the equations (2) have real roots satisfying \(x_1 y_1 - x_2 y_2 = 1 \). By the familiar formula, the roots of the quadratic equations are given by

\[
\begin{align*}
 x_{1,2} &= \frac{-p \pm K}{2} \\
 y_{1,2} &= \frac{p \pm L}{2},
\end{align*}
\]

where the real numbers \(K, L \) satisfy \(K^2 = p^2 - 4q \) and \(L^2 = p^2 - 4r \) (we choose the signs of \(K, L \) in accordance with the labelling of the roots). Thus

\[
1 = x_1 y_1 - x_2 y_2 = \frac{(-p + K)(p + L) - (-p - K)(p - L)}{4} = \frac{p(K - L)}{2},
\]

whence \(p \neq 0 \) and \(K - L = 2/p \). Substituting this into the equality

\[
(K + L)(K - L) = K'^2 - L^2 = (p^2 - 4q) - (p^2 - 4r) = 4(r - q),
\]

yields \(K + L = 2p(r - q) \). From these values of \(K + L \) and \(K - L \) we obtain \(K = 1/p - p(q - r) \) and \(L = -p(q - r) + 1 \). Comparing this with the equality \(K'^2 = p^2 - 4q \), an easy manipulation leads to the desired equation (1).

Second part. Assume that (1) holds. Then clearly \(p \neq 0 \). The equation (1) can be rewritten in either of the following two forms,

\[
p(q - r)^2 + 2p^2(q - r) + 1 = p^2 - 4p^2r \quad \text{and} \quad p^2(r - q)^2 + 2p^2(r - q) + 1 = p^4 - 4p^2q.
\]

Upon dividing by \(p^2 \) we find that the discriminants of the equations (2) are equal to

\[
p^2 - 4q = \left(\frac{p^2(r - q) + 1}{p} \right)^2 \quad \text{and} \quad p^2 - 4r = \left(\frac{p^2(q - r) + 1}{p} \right)^2;
\]

hence, they are nonnegative and the (real) roots of (2) have the form (3), where

\[
K = \frac{p^2(r - q) + 1}{p} \quad \text{and} \quad L = \frac{p^2(q - r) + 1}{p}.
\]

The signs of the numbers \(K \) and \(L \) have been chosen so that (see First Part)

\[
x_1 y_1 - x_2 y_2 = \frac{K}{2} \cdot \left(\frac{p^2(r - q) + 1}{p} + \frac{p^2(q - r) + 1}{p} \right) = 1.
\]

Problem 2

(Mutually distinct) primes \(p, q, r \) satisfy the desired conditions if and only if the number \(pq + pr + qr - k \) is divisible by each of the primes \(p, q, r, \) that is, by the product \(pqr \). The equality \(pq + pr + qr - k = n \cdot pqr \), for a suitable integer \(n \), can be rewritten as \(k = pq + pr + qr - n \cdot pqr \). If \(n \leq 0 \), then the last equality implies that \(\max(p, q, r, k) \leq k \). However, then each of the primes \(p, q, r \) is less than or equal to \(k/2 \) (and there is only a finite number of such triples). If \(n \geq 1 \), then we get the estimate \(k \leq pq + pr + qr - pqr \). Let us show that the last expression is negative (contradicting the fact that \(k > 0 \)) unless the triple in question is \((p, q, r) = (2, 3, 5) \). We can assume that \(2 \leq p < \sqrt{3} < r \) and \(r > 7 \). Then \(pq \geq 2 \cdot 3 - 6 \) and the inequality \((p - 2)(q - 2) \geq 0 \) implies that \(p + q \leq 3pq + 2 \), hence

\[
pq + pr + qr - pqr = (p + q)r + pq + pqr \leq 3pq + 2r + pqr
\]

\[= 2r - pq(\frac{3}{2}r - 1) \leq 2r - 6(\frac{3}{2}r - 1) = 6 - r < 0.
\]

Let \(k \) be the circumcircle of the quadrangle \(ABCD \) and \(k_1, k_2 \) the circumcircles of the triangles \(PAB \) and \(PCD \), respectively. In the interior of the angle \(BPC \), consider the half-line \(PT \) such that \(|\angle BPT| = |\angle BAP| \). Then the hypothesis on \(P \) implies that (Fig. 1)

\[
|\angle TCP| = |\angle PBC| - |\angle BPT| = |\angle BPC| - |\angle DAP| = |\angle PDC|.
\]

Thus \(PT \) is the common interior tangent of the circles \(k_1 \) and \(k_2 \).
Since the quadrangle $ABCD$ is cyclic, $\angle QDA = \angle QBC$. From the relations (1) and (5) we thus get
\[|\angle FEG| = |\angle QBC| - |\angle PBA| = |\angle PBC|. \]

Using finally the relations (3) and (6) we see that the triangles EFG and PBC are similar (as they have two congruent angles).

An analogous argument can be used when the point Q is located on the half-line AB beyond the points B. If the lines AB and CD are parallel, then $ABCD$ is an equilateral trapezoid, with bases AB and CD. Since the points E, F, G are collinear and the common interior tangent of the circles k_1 and k_2 is parallel to both lines AB and CD, the triangles APD and BPC are congruent. The similarity of the triangles EFG and APD thus implies also the similarity of the triangles EFG and BPC. This completes the proof.

Problem 4

From the form of the equations it is immediate that $xyz \neq 0$. Two of the numbers x, y, z must have to be of the same sign; then the right-hand side of the equation where the ratio of these two numbers occurs is positive, hence so must be the corresponding left-hand side, which implies that the third of the numbers x, y, z must also have the same sign as the first and the second. Thus either $x, y, z > 0$, or $x, y, z < 0$. Let us consider only the former case (the latter can be reduced to it by passing from the solution (x, y, z) to the solution $(-x, -y, -z)$). Multiply the first two equations of the system by the expression xyz and then subtract them; this gives, upon a small manipulation, $x - y = y(z^2 - yz)$. If a triple (x, y, z) is a solution, then so are also the triples (y, x, z) and (z, y, x); thus we may assume that $x = \max(x, y, z)$. Then $y = x - y > 0$ and $z = z - y > 0$ (remember that $x, y, z > 0$), so the equality $x - y = y(z^2 - yz)$, together with the condition $y > 0$, implies that $x = y = z$. The system thus reduces to the single equation $x^2 = 1 + 1$, which has a (unique) positive root $x = \sqrt{2}/2$.

Conclusion. The system has exactly two solutions, $x = y = z = \pm\sqrt{2}/2$.

Problem 5

A point V of the plane containing a triangle ABC is its orthocenter if and only if, at the same time, $AV \perp BC$ and $BV \perp AC$; that is, $AV \cdot BC = 0$ and $BV \cdot AC = 0$. Substituting $BC = BV - CV$ and $AC = AV - CV$, an easy manipulation leads to the equivalent condition in the form of the equality of the scalar products
\[AV \cdot BV = AV \cdot CV = BV \cdot CV. \]

Our goal is thus to find out when the system (1) is satisfied together with the analogous system
\[KV \cdot LV = KV \cdot MV = LV \cdot MV, \]
expressing the fact that the point V is the orthocenter of the triangle KLM. We now express the vectors from (2) as linear combinations of the vectors from (1). By hypothesis, there exists a number p, $0 < p < 1$, for which
\[AK = pAB, \quad BL = pBC, \quad CM = pCA. \]

Substituting into the first equality $AK = AV - KV$ and $AB = AV - BV$, we get after a small manipulation the first of the following three equalities
\[KV = (1 - p)AV + pBV, \quad LV = (1 - p)BV + pCV, \quad MV = (1 - p)CV + pAV; \]
the other two can be derived similarly. Taking products, we get
\[KV \cdot LV = (1 - p)^2 AV \cdot BV + p(1 - p)AV \cdot CV + p(1 - p)BV^2 = -(1 - p)s + p(1 - p)BV^2, \]
where s denotes the common value of the products from (1). Similarly,
\[KV \cdot MV = (1 - p)s + p(1 - p)AV^2 \quad \text{and} \quad LV \cdot MV = (1 - p)s + p(1 - p)BV^2. \]

We see that the system (2) is equivalent to the system of equalities
\[p(1 - p)AV^2 = -(1 - p)s + p(1 - p)BV^2, \]
which, in view of the condition $p(1 - p) \neq 0$, is fulfilled if and only if $|AV| = |BV| = |CV|$. The last condition means that the orthocenter V of the triangle ABC coincides with its circumcenter. This happens if and only if the triangle ABC is equilateral.